计算机数学基础 (第四版)

计算机数学基础 (第四版) 教材名称: 计算机数学基础 (第四版)
ISBN号: 978-7-89535-222-3 作者: 李连富
字数: 512千字 规格: 16k
印制时间: 2023-08-01 出版日期: 2023-08-01
定价: 55 元 样章下载: 计算机数学基础(第四版).pdf
购买地址:

一、教材基本信息
1.适用对象
本教材是编者在多年教学改革和教学研究的基础上,结合TOPCARES教学改革的探索与实践编写而成。本教材可作为计算机类学生的基础课《计算机数学基础》的教材,也可作为高职高专学生数学基础类课程的教材或教学参考资料。
2.需具备的知识与能力基础
使用本教材的读者要求具备高中数学教学大纲所要求的知识和能力基础,记忆基本初等函数的概念,理解基本初等函数的性质,理解实数的性质,能运用实数理论进行基本运算。
3.总体知识与能力目标
通过本教材的学习,使学生掌握一元微积分、线性代数、概率论与数理统计和离散数学的基本概念、基本理论和基本计算,为后续课程的学习奠定必要的数学基础;通过运用所学的上述知识来解决实际问题,培养学生应用数学知识、数学思想和数学工具解决专业领域相关基本数学问题的能力。
通过本教材的学习,可培养学生抽象思维、逻辑推理、空间想象等数学思维能力,培养学生具有综合运用所学知识分析问题和解决问题的创造性思维能力,养成终生学习、自主学习的习惯,同时还培养书面表达和团队协作的基本能力。
4.编写团队
本教材由李连富任主编,严维军和陈昊任副主编,参加编写的人员还有赵仓梅、张黎丽、肖业亮、王淑娟、郑志静、刘佳和杨航。
二、教材基本结构与内容组织
1.教材的基本结构
本教材共分4篇11章,结构如下:篇章内容第1篇
一元微积分基础第1章函数、极限与连续第2章一元函数微分学及其应用第3章一元函数积分学第2篇
线性代数基础第4章行列式与矩阵第5章线性方程组第3篇
概率论与数理统计基础第6章概率论基本概念第7章随机变量的分布及其数字特征第8章数理统计的基础知识第4篇
离散数学基础第9章集合与关系第10章图论第11章数理逻辑初步2.教材的内容组织
本教材编写以工程教育TOPCARES教学理念为指导,以能力培养为目标,以项目导向(案例引入)为方法,以“做中学”为手段,以数学软件作为辅助工具,教学内容上体现“五多五少二充分一注重”,即多一点思想方法,少一点死记硬背;多一点归纳引入,少一点演绎证明;多一点事例论证,少一点理论推导;多一点概念强化,少一点计算技巧;多一点项目渗透,少一点特殊题型;充分体现TOPCARES改革思想,充分利用计算机解决实际问题;注重自学能力和应用数学知识解决实际问题能力的培养。
本教材立足应用型人才培养,构建了合理的教材编排结构,注重以实际案例引入概念,讲解理论,用理论知识解决实际问题,渗透数学建模思想,培养学生的创新思维。针对学生的差异,配备了分层的例题和习题。
第1篇一元微积分基础
项目导学3
第1章函数、极限与连续6
11函数及其特性6
11.1函数的概念7
112函数的表示方法8
113函数的图形8
114函数的几种特性10
12初等函数14
121反函数和复合函数15
122初等函数16
123函数与数据拟和16
13函数极限的概念与性质20
131自变量趋于有限值时函数的极限22
132单侧极限22
133自变量趋于无穷大时函数的极限24
134函数极限的性质25
14初等函数的极限26
141初等函数在其定义区间内的极限27
142初等函数在其定义域外的极限28
15函数的连续性与间断点31
151函数的连续性32
152函数的间断点33
单元训练一36
第2章一元函数微分学及其应用38
21导数的概念38
211导数定义41
212单侧导数43
213函数可导与连续之间的关系44
214导数的几何意义44
22导数的基本公式与运算法则48
221导数的四则运算法则49
222反函数的求导法则50
223复合函数的求导法则51
224初等函数的求导法则52
23导数的应用55
231函数的单调性56
232利用一阶导数判断极值58
233利用导数求函数的最大值最小值59
24函数的微分及其应用63
241微分的定义63
242微分的运算64
25洛必达法则67
25100型和∞∞型未定式68
252其他类型未定式(0·∞,∞-∞,00,1∞和∞0)69
26*微分中值定理71
261罗尔定理72
262拉格朗日中值定理73
263柯西中值定理75
单元训练二77
目录第3章一元函数积分学79
31定积分的概念79
311定积分的定义82
312定积分的几何意义83
313定积分的性质83
32不定积分87
321原函数的概念88
322不定积分的概念88
323基本积分表89
324不定积分的性质90
33微积分基本定理93
331可变上限的定积分94
332牛顿莱布尼茨公式94
34基本积分法97
341定积分的换元积分法97
342定积分的分部积分法99
35定积分的应用103
351微元法104
352定积分在几何学上的应用104
36广义积分110
361无穷区间上的广义积分110
362无界函数的广义积分112
单元训练三115
第2篇线性代数基础
第4章行列式与矩阵122
41行列式的概念122
411二阶行列式123
412三阶行列式124
413余子式及代数余子式124
414n阶行列式125
42行列式的性质127
43克莱姆(Cramer)法则131
44矩阵及其运算133
441矩阵的定义134
442几种特殊矩阵134
443矩阵的运算135
45逆矩阵140
451逆矩阵的概念141
452矩阵可逆的条件141
453逆矩阵的性质142
454矩阵方程143
单元训练四145
第5章线性方程组148
51矩阵的初等变换与矩阵的秩148
5.11矩阵的初等变换149
512增广矩阵149
513阶梯形矩阵150
514矩阵的秩151
515初等矩阵152
5.1.6利用初等行变换求逆矩阵154
5.2利用矩阵的初等变换解线性方程组155
52.1齐次线性方程组的解法156
52.2非齐次线性方程组的解法158
5.3n维向量组及其线性关系162
5.3.1n维向量的定义162
5.3.2向量间的线性关系164
5.3.3向量组的秩166
5.4线性方程组解的结构168
54.1齐次线性方程组解的结构168
54.2非齐次线性方程组解的结构170
单元训练五174
第3篇概率论与数理统计基础
第6章概率论基本概念179
61随机事件及其概率180
611随机事件180
612事件间的关系与运算182
613概率的定义及其性质183
6.2古典概型186
6.3条件概率188
631条件概率189
632乘法定理190
633全概率公式和贝叶斯公式191
6.4事件的独立性195
单元训练六197
第7章随机变量的分布及其数字特征200
71随机变量201
711随机变量的定义202
712引入随机变量的意义203
7.2离散型随机变量及其分布204
7.21离散型随机变量及其概率分布204
7.22常用的离散型随机变量的分布205
7.3随机变量的分布函数210
7.31随机变量的分布函数211
7.32离散型随机变量的分布函数211
7.4连续型随机变量及其分布214
7.41概率密度函数215
7.42常用的连续型随机变量的分布216
7.5数学期望及其性质220
7.51离散型随机变量的数学期望221
7.52连续型随机变量的数学期望222
7.5.3数学期望的性质223
7.6方差及其性质225
7.61方差的概念226
7.62方差的性质227
7.6.3常用分布的方差227
单元训练七230
第8章数理统计的基础知识233
81统计的基本概念233
811总体与样本234
812统计量234
813常用统计量的分布235
82常见统计的方法介绍及应用238
821点估计239
822区间估计242
单元训练八247
第4篇离散数学基础
第9章集合与关系251
91集合的概念与运算252
911集合的表示252
912集合的运算255
9.2关系的概念258
921关系258
92.2关系的表示259
9.3关系的运算与性质261
9.31关系的运算262
9.3.2关系的性质264
9.4等价关系与划分267
9.41等价关系267
9.4.2等价类268
9.4.3等价关系与划分269
单元训练九271
第10章图论273
101图的基本概念274
1011图的定义274
1012结点的度数276
1013图的同构277
 
102图的连通性279
1021通路与回路280
1022图的连通性281
1023欧拉图282
1024哈密顿图283
103图的矩阵表示285
1031邻接矩阵286
1032关联矩阵287
104树及其应用290
1041无向树与生成树290
1042根树及其应用292
单元训练十295
第11章数理逻辑初步297
111命题逻辑的基本概念298
111.1命题298
1112命题联结词299
1113命题公式及真值表302
112命题逻辑的等值演算306
1121公式等值306
1122等值演算307
113命题逻辑的基本推理309
单元训练十一313
附录A1常用数学用表315
附录A2学习知识要点及能力要点323
参考文献326
 
2016年6月,中国成为国际本科工程学位互认协议《华盛顿协议》的正式会员,这是中国工程教育国际化进程的重要里程碑。“回归工程”、培养学生的“大工程观”是当今国际工程教育的主流理念。《华盛顿协议》对毕业生提出的12条素质要求中,不仅要求工程知识、工程能力,还强调通用能力和品德伦理;在实践上,以学生为中心,以产出为导向,注重对目标达成的支撑及持续改进,与CDIO工程教育实质等效。
CDIO工程教育是近年来国际工程教育改革的最新成果,以“预期学习结果”集合来驱动课程内容、教学方法、教育文化的设计,重视营造工程教育文化,其注重工程能力培养和基于工程项目全生命周期的一体化设计思想,对于国内工程类和相关专业的建设具有重要的实施价值。
作为承载了教学改革思想的载体,融入CDIO工程教育理念的高品质教材,东软CDIO工程教育教材在注重理实结合的同时,也注重对学生八大能力的培养,即:技术知识与推理能力,开放式思维与创新,个人职业能力,沟通表达与团队合作,态度与习惯,责任,价值观,实践构思、设计、实现和运行对社会的贡献。
CDIO工程教育教材是 CDIO教育教学改革在教学实施过程中的集中体现,它不仅承载着课程和项目的教学内容,而且贯穿和体现了CDIO工程教育的理念、思想与方法,是在系统化理论的指导下,将知识、能力、素质培养进行一体化设计,有机融合在教材体系中。教材的编写以能力培养为主线,以案例教学为引导,以项目为载体,充分体现“做中学”和“学中做”的思想,具有以下优势:
(1)以能力培养为主线,培养学生专业知识学习能力和工程实践能力。
(2)以案例为驱动,在做案例的过程中学习新知识,充分体现了“做中学”。
(3)以项目为载体,基于工程化教育方法,按照分析、设计、实施、运行展开项目及知识点的讲解。
(4)围绕专业知识结构和能力体系设计教材,实现同一专业下不同教材紧密的关联性。
(5)内容编排循序渐进,符合人的认知规律。
(6)适应柔性化教学变革,构建一体化、立体化教学资源。
CDIO工程教育教材可供以应用型人才为培养目标的高等院校以及职业培训机构作为教材使用。
目前,CDIO工程教育教材的建设还处于探索阶段,是一项创造性的工作,尚需要通过改革的实践不断加以深化和持续改进,任重而道远。